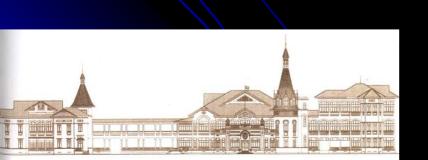
Acid Base Disturbance



ภูษิต เฟื่องฟู พบ.

วว.ศัลยศาตร์ทั่วไป, วว.เวชบำบัดวิกฤต

กองศัลยกรรม โรงพยาบาลพระมงกุฎเกล้า

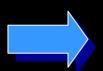
Overview

- Body Buffer System
- Acid Base disturbances
- Treatment

Definition

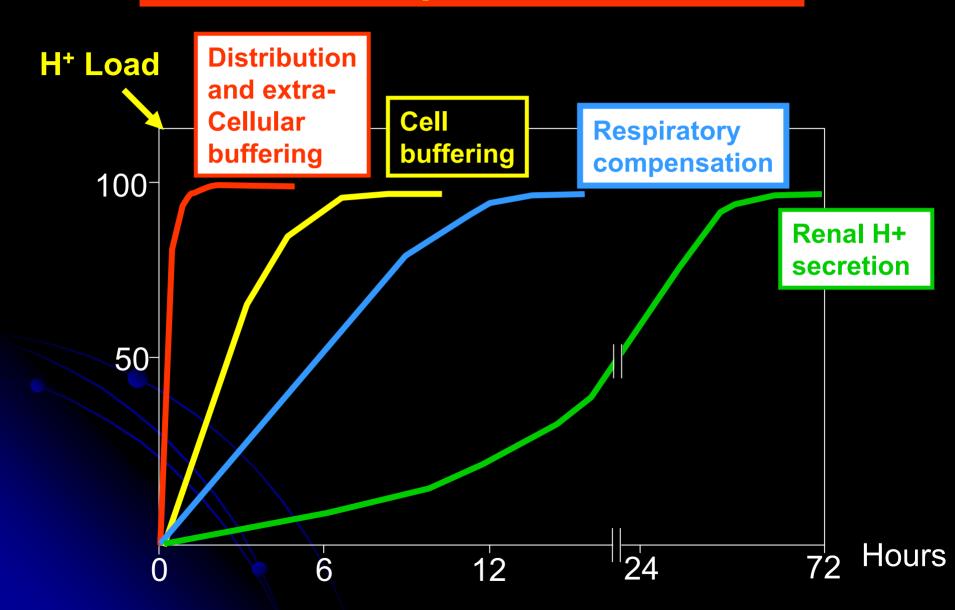
- Acids release H⁺
 - example: HCl -> H⁺ + Cl⁻
- Bases absorb H⁺
 - example: $HCO_3^- + H^+ -> H_2CO_3$

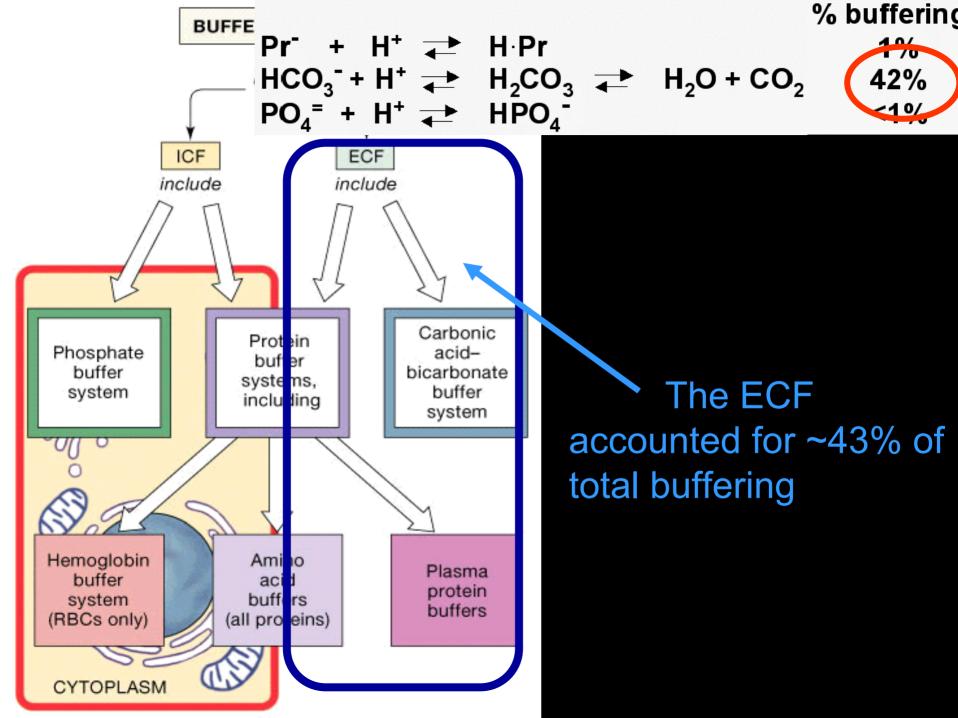
Introduction


- Metabolism generates Hydrogen ions 40-80 mmol/day
- pH 7.35-7.46 retained H⁺ within 35-45 nmol/l

H⁺ per day = 40-80 x 1,000,000 <u>nmol/l</u>

pH is logarithmic


```
    pH = log 1/[H<sup>+</sup>]
    = - log [H<sup>+</sup>]
    = - log 0.0000004 Eq/L
    pH = 7.4
```


Small Δ pH means large Δ [H⁺]


```
pH 7.4 = 0.000000004
pH 7.1 = 0.00000008
```

Buffer: pH Guardian

Carbonic acid-Bicarbonate Buffer System

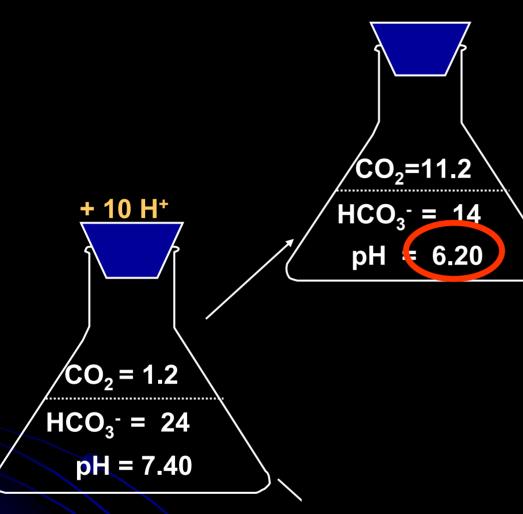
$$CO_2 + H_2O \implies H_2CO_3 \implies HCO_3^- + H^+$$

CO₂ Production

14,000-20,000 mM/day

Dietary protein breakdown

40-80 mEq/day


$$[H^+] = 24 \times pCO_2$$

$$[HCO_3^-]$$

$$40 \text{ mmHg}$$

$$24 \text{ mEq/L}$$

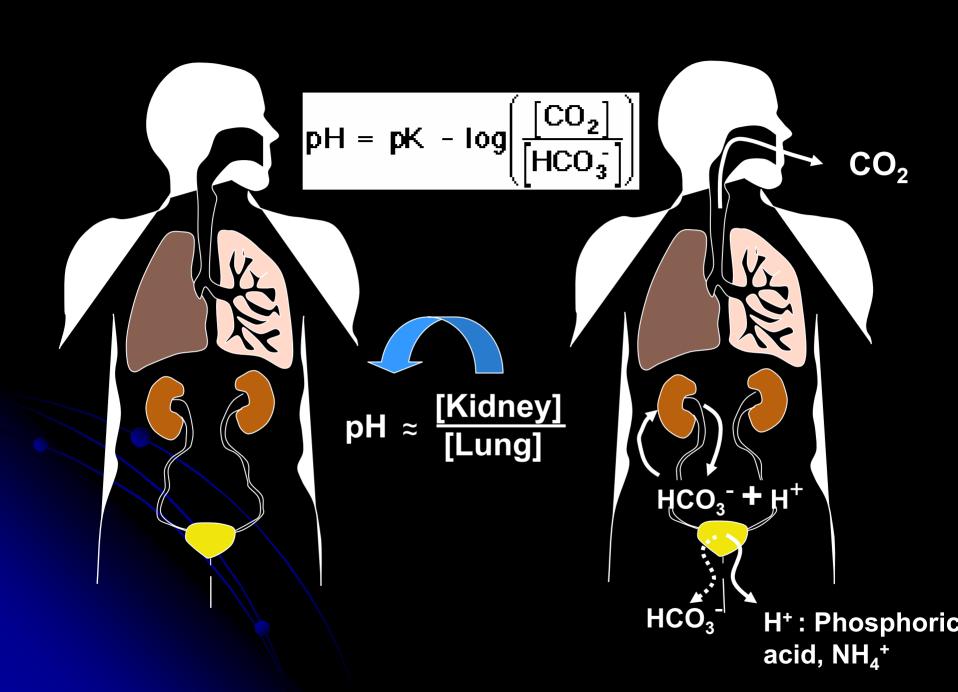
estimated[H+]	pН
70	7.10
60	7.20
50	7.30
40	7.40
30	7.50

estimated[H+]	рН
70	7.10
60	7.20
50	7.30
40	7.40
30	7.50

Henderson-Hasselbach Equation

$$CO_2 + H_2O \Longrightarrow H_2CO_3 \Longrightarrow HCO_3^- + H^+$$

$$pH = pK + log \frac{[A^-]}{[HA]}$$

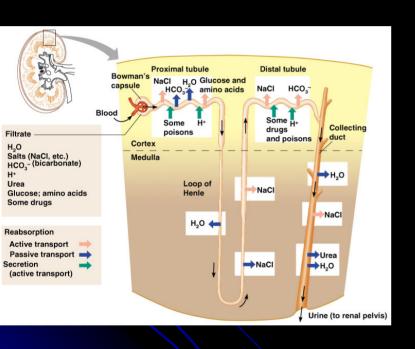

$$[HA] = [H_2CO_3] \text{ (at equilibrium)} = [CO_2]_{dissolved}$$

pH = 6.1 + log
$$\frac{[HCO_3]}{[CO_2]_{dissolved}}$$

 $SCO_2 = 0.03$ mmoles $CO_2/L/mmHg$


pH = 6.1 +
$$log \frac{[HCO_3^-]}{S_{CO_2} \times PCO_2}$$

pH =
$$6.1 + log \frac{[HCO_3]}{0.03 \times PCO_2}$$

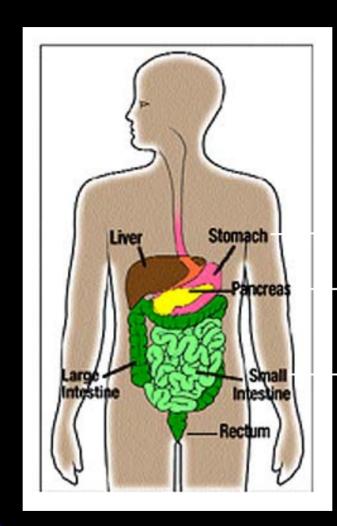

Respiratory Component

PaCO₂ & Minute Ventilation

 $\uparrow H^+ + HCO_3^- \Leftrightarrow H_2CO_3 \Leftrightarrow CO_2 + H_2O$

Renal Component

- Production of "new" bicarbonate via excretion of acid ≈ 70 mEq/day
- Reabsorption of filtered bicarbonate ≈ 4,000 mEq/day

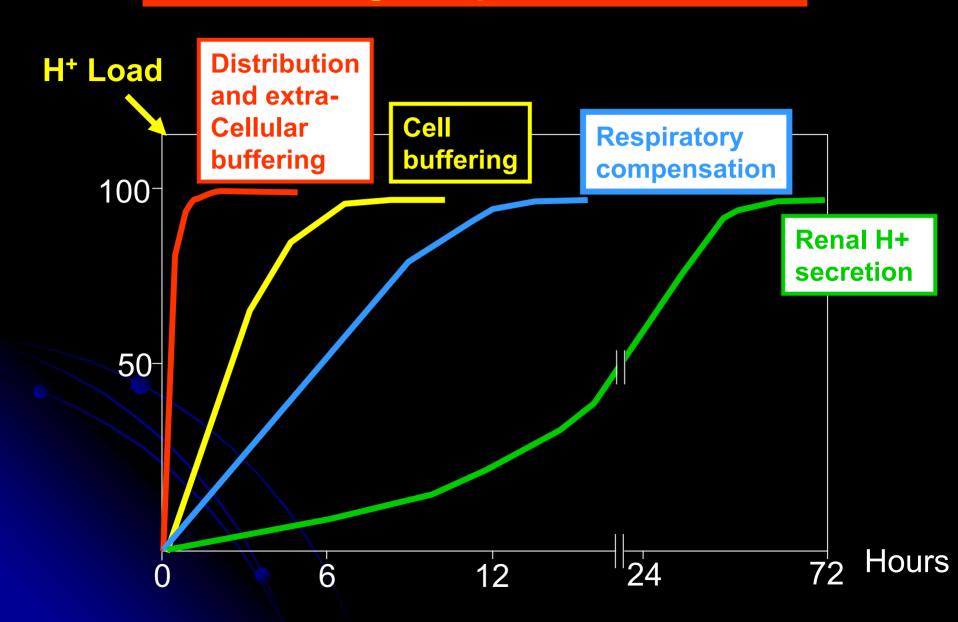

Acid-base disturbances from Gastrointestinal loss

Vomiting:

Loss of H⁺ leading to alkalosis

Diarrhea:

Loss of HCO₃-leading to acidosis



Highly acidic, pH =1.0

Secretes HCO₃-

pH varies from 4.0 to 8.0

The Big 3 of pH Guardian

The Four Cardinal Acid Base Disorders

Disorder	рН	pCO ₂ [HCO ₃ -]
M acidosis	\	↓ ↓
M alkalosis	↑	↑ ↑
R acidosis	\	↑ ↑
R alkalosis	↑	↓

Boston approach in Systemic ABG analysis

- 1. Check arterial pH
- 2. [HCO₃-] & PaCO₂ analysis
- 3. Calculate AG
- 4. Assess delta ratio
- 5. Check "clues"
- 6. Assess compensatory responses
- 7. Formulate acid-base diagnosis

1. Check arterial pH

- pH < 7.4 = acidosis
 pH > 7.4 = alkalosis
- Principle No over-compensation

Boston approach in Systemic ABG analysis

- √ 1. Check arterial pH
 - 2. [HCO₃-] & PaCO₂ analysis
 - 3. Calculate AG
 - 4. Assess delta ratio
 - 5. Check "clues"
 - 6. Assess compensatory responses
 - 7. Formulate acid-base diagnosis

2. [HCO₃-] & PaCO₂ analysis

Respiratory Compensation for Metabolic Changes

Metabolic acidosis

PaCO₂ decreases by 1.2 x the drop in [HCO₃⁻] PaCO₂ \approx 1.5 [HCO₃⁻] + 8

Metabolic alkalosis

PaCO₂ increases by 0.7 x the rise in [HCO₃] PaCO₂ \approx 0.9 [HCO₃] + 16

Metabolic Compensation for Respiratory Changes

Respiratory Acidosis

Acute: $[HCO_3]$ increases by 0.1 x the rise in $PaCO_2$ Chronic: $[HCO_3]$ increases by 0.35 x the rise in $PaCO_2$

Respiratory Alkalosis

Acute: [HCO₃] decreases by 0.2 x the fall in PaCO₂

Chronic: [HCO₃] decreases by 0.5 x the fall in PaCO₂

[HCO₃-] & PaCO₂ analysis

Both are low
 The last 2-digit if pH = PaCO₂
 metabolic acidosis
 respiratory alkalosis
 Both are high
 metabolic alkalosis
 respiratory acidosis

Opposite directions [HCO₃-] & PaCO₂
 Mixed disorder must be present

- 60-year-old diabetic with a long history of not taking her insulin. She is admitted to the hospital and you receive the following data on her: pH 7.26, PaCO₂ 42, HCO₃ 17... Metabolic acidosis.
- A 1st year resident was anxious about her basic sciences examination. She felt numbness around her mouth and tingling in her hands and went to the clinic. pH 7.48, PaCO₂ 30, HCO₃- 23... Respiratory alkalosis

A 1st year medical student who did really well on his 1st biochemistry test celebrated too much afterwards. After a weekend of atonement, his lab values are: pH 7.48, PaCO₂ 51, HCO₃- 29... **Metabolic alkalosis**

A 40 year-old man with renal failure for 1 year presents with nausea, vomiting and weakness. His blood chemistry reveals Na 138 mEq/L, K 5.5 mEq/L, CI 95 mEq/L, HCO₃ 16 mEq/L ABG: pH 7.31, PaCO₂ 31 mmHg The most likely acid-base disorder is

- A. Metabolic alkalosis
- B. Respiratory alkalosis
- C. Mixed respiratory alkalosis and metabolic acidosis
- D. Metabolic acidosis
- E. Mixed respiratory acidosis and metabolic alkalosis

A 40 year-old man with renal failure for 1 year presents with nausea, vomiting and weakness. His blood chemistry reveals Na 138 mEq/L, K 5.5 mEq/L, CI 95 mEq/L, HCO₃ 16 mEq/L ABG: pH 7 31 PaCO₂ 31 mmHg
The most likely acid-base disorder is

- A. Metabolic alkalosis
- B. Respiratory alkalosis
- C. Mixed respiratory alkalosis and metabolic acidosis
 D. Metabolic acidosis
 - E. Mixed respiratory acidosis and metabolic alkalosis

```
Winter's formula: PaCO_2 = 1.5 [HCO_3^-] + 8
= 1.5[16] + 8
= 32
```

An acutely-ill 50-year-old woman with a history of severe vomiting for the past 4 days. Physical examination profound lethargy, a pulse rate of 120/min,a respiration rate of 12/min, and BP of 80/50 mmHg.

Serum electrolytes

Sodium 140 meq/L

Potassium 3.3 meq/L

Chloride 85 meg/L

Bicarbonate 25 meq/L

Arterial blood studies on room air:

pH 7.40 PaCO₂ 41 mmHg,

An acutely-ill 50-year-old woman with a history of severe vomiting for the past 4 days. Physical examination profound lethargy, a pulse rate of 120/min,a respiration rate of 12/min, and BP of 80/50 mmHg.

Serum electrolytes

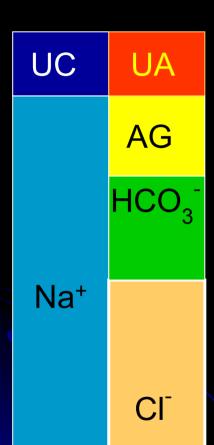
Sodium 140 meg/L

Potassium 3.3 meq/L

Chloride 85 meq/L

Bicarbonate 25 meg/L

Arterial blood studies on room air:

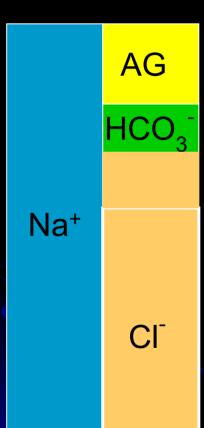

pH 7.40

PaCO₂ 41 mmHg,

Boston approach in Systemic ABG analysis

- 1. Check arterial pH
 - 2. [HCO₃-] & PaCO₂ analysis
 - 3. Calculate AG
 - 4. Assess delta ratio
 - 5. Check "clues"
 - 6. Assess compensatory responses
 - 7. Formulate acid-base diagnosis

3. Calculate "Anion Gap"


- Unmeasured cations
 K⁺, Ca⁺⁺, and Mg⁺⁺
 account for about 11 mEq/L.
- Unmeasured anions
 (PO₄)³⁻, SO₄²⁻, albumin and some organic acids,
 accounting for 20 to 24 mEq/L.
- Typical anion gap is 23 11 = 12 mEq/L.
- The anion gap can be affected by increases or decreases in the UC or UA.

Decreased anion gap

UC IJA AG Na⁺

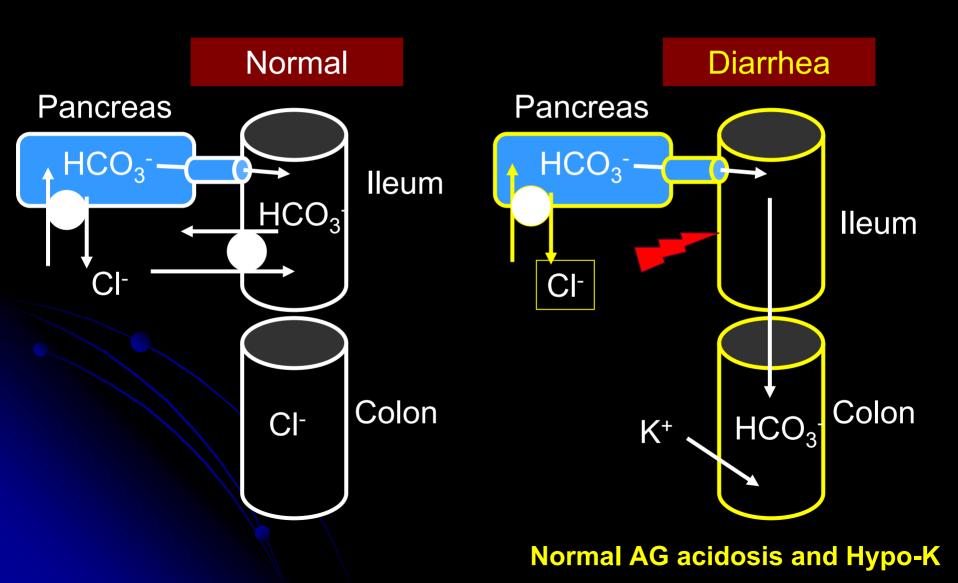
- ↑ Unmeasured cations
 K+, Ca++, and Mg++
 gamma globulin
- Unmeasured anions
 (PO₄)³-, SO₄²-, albumin and some
 organic acids,
- The effect of low albumin can be accounted for by adjusting the normal range for the anion gap 2.5 mEq/L upward for every 1-g/dL fall in albumin.

Normal anion gap Metabolic acidosis

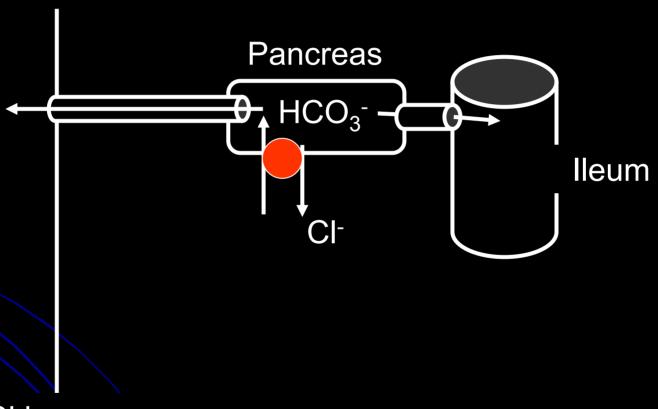
~ 10-12 mEq/L
$$\equiv$$
 [Na⁺] - ([Cl⁻] + [HCO₃⁻])

HCO₃ loss

- = Normal AG Metabolic acidosis
- Occur in GI tract or Renal

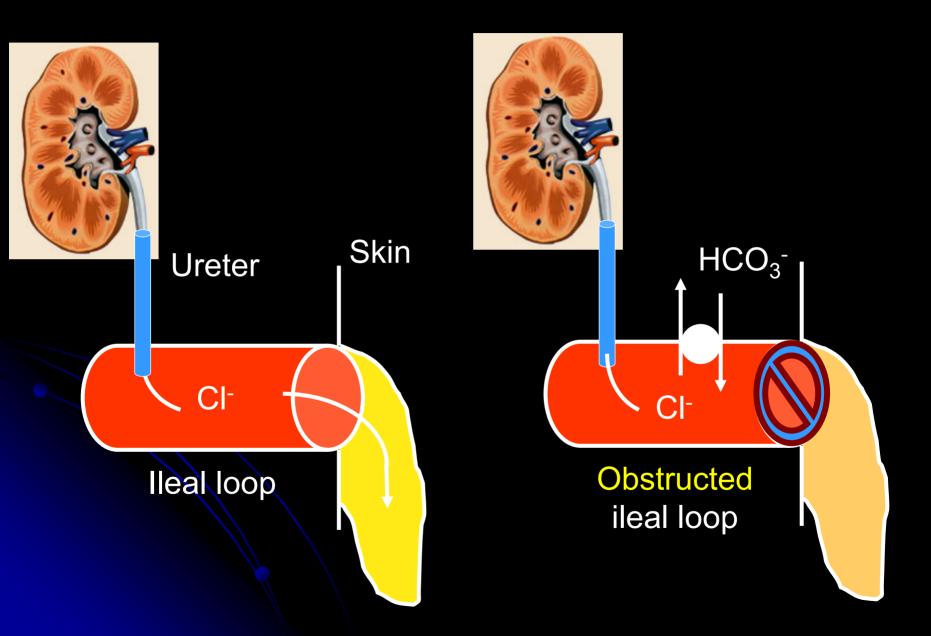

Causes of a "Normal anion gap" (hyperchloremic) metabolic acidosis

1. GI bicarbonate loss:


diarrhea
villous adenoma
pancreatic fistulae
uretero-sigmoidostomy
obstructed uretero-ileostomy

- Renal bicarbonate (or equivalent) loss proximal RTA, distal RTA and type IV RTA early renal failure
- 3. Ingestions & infusions ammonium chloride hyperalimentation (arginine/lysine-rich)

Diarrhea Causes Loss of HCO₃



Pancreatic fistula or transplant

Skin or urinary bladder

Obstructed Uretero-ileostomy

Wide-anion gap Metabolic acidosis

- Organic acid load: Shock, Renal failure, DKA
- Toxic ingextation: ASA, Alcohol etc.
- = Wide AG Metabolic acidosis

AG
AHCO₃

Na⁺

Cl

~ 10-12 mEq/L
$$\equiv$$
 [Na⁺] - ([Cl⁻] + [HCO₃⁻])

- AG elevated in either acidosis or alkalosis
- AG > 20
 67% likelihood of metabolic acidosis
- AG > 30
 - ~ 100% likelihood of metabolic acidosis

An acutely-ill 50-year-old woman with a history of severe vomiting for the past 4 days. Physical examination profound lethargy, a pulse rate of 120/min,a respiration rate of 12/min, and BP of 80/50 mmHg.

Serum electrolytes

Sodium 140 meq/L

Potassium 3.3 meq/L

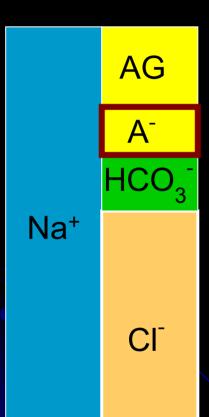
Chloride 85 meg/L

Bicarbonate 25 meq/L

Arterial blood studies on room air:

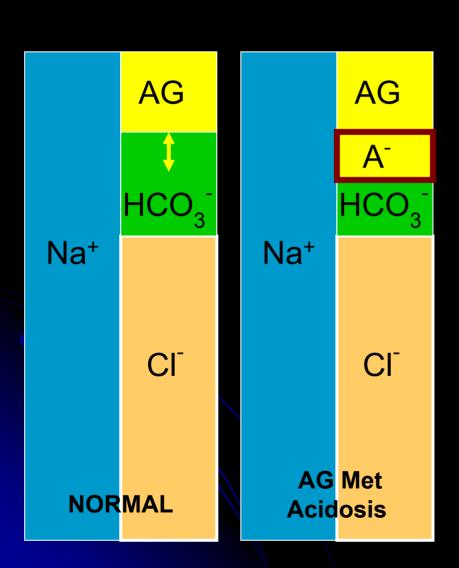
pH 7.40

PaCO₂ 41 mmHg,


1

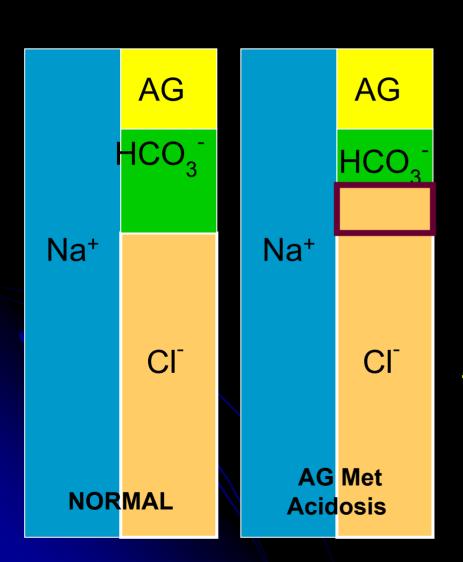
3. AG = 140 - 85 - 25 = 30

Boston approach in Systemic ABG analysis

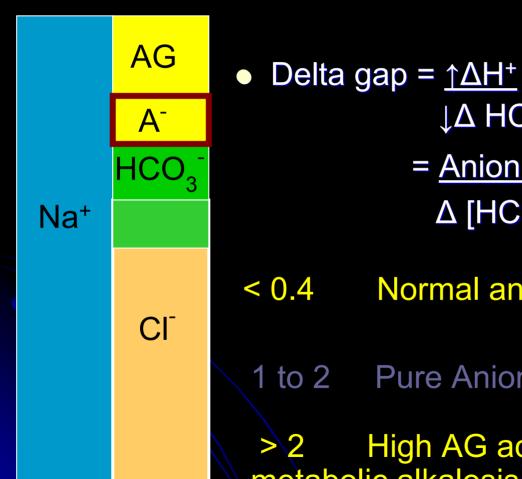

- 1. Check arterial pH
 - 2. [HCO₃-] & PaCO₂ analysis
- 3. Calculate AG
 - 4. Assess delta ratio
 - 5. Check "clues"
 - 6. Assess compensatory responses
 - 7. Formulate acid-base diagnosis

Assess delta ratio

- $\uparrow \Delta H^+ = \downarrow \Delta HCO_3^-$
- The delta-delta ratio, to determine if a second metabolic disorder is present.
- Delta gap = Anion gap 12 $\Delta [HCO_3^-]$


Assess de Assesso delta ratio

Delta gap = $\uparrow \Delta H^{+}$ $\downarrow \Delta HCO_{3}^{-}$ = Anion gap - 12 $\Delta [HCO_{3}^{-}]$


1 to 2 = Pure Anion Gap Acidosis

Assess de Rasesis delta ratio

- Delta gap = ↑ΔH⁺
 ↓Δ HCO₃⁻
 = Anion gap 12
 Δ [HCO₃⁻]
- < 0.4 Normal AG acidosis
- 1 to 2 = Pure Anion Gap Acidosis

Assess delta ratio

JΔ HCO₃-= <u>Anion gap – 12</u> $\Delta [HCO_3^-]$

Normal anion gap acidosis

1 to 2 Pure Anion Gap Acidosis

High AG acidosis combined with metabolic alkalosis or pre-existing compensated respiratory acidosis

An acutely-ill 50-year-old woman with a history of severe vomiting for the past 4 days. Physical examination profound lethargy, a pulse rate of 120/min,a respiration rate of 12/min, and BP of 80/50 mmHg.

Serum electrolytes

Sodium 140 meg/L

Potassium 3.3 meq/L

Chloride 85 meq/L

Bicarbonate 25 meq/L

Arterial blood studies on room air:

pH 7.40

PaCO₂ 41 mmHg,

3. AG = 140 - 85 - 25 = 30

4. \triangle Gap = 30-12/25-24 = 18

Serum electrolytes

Sodium 140 meq/L

Potassium 3.3 meq/L

Chloride 85 meq/L

Bicarbonate 25 meq/L

Arterial blood studies on room air:

pH 7.40

PaCO₂ 41 mmHg

3.
$$AG = 140 - 85 - 25 = 30$$

4.
$$\Delta$$
Gap = 30-12/25-24 = 18

The most like acid-base disorder is:

- A Metabolic acidosis
- B Metabolic alkalosis
- C Respiratory acidosis and metabolic alkalosis
- D Metabolic acidosis and metabolic alkalosis
- E Respiratory alkalosis

A 42-year-old man is admitted to the hospital with dehydration and hypotension.

Na 165 mEq/L, K 4.0 mEq/L, Cl 112 mEq/L ,HCO $_3$ 32 mEq/L No arterial blood gas is obtained.

What is acid-base disturbance?

HCO₃ 32 mEq/L → Met alkalosis Vs Resp acidosis

Anion gap: 165 - (32 + 112) = 21 mEq/L

→ Wide gap met acidosis

$$\Delta$$
 gap = 21-12 = 9

 \rightarrow HCO₃ should be 24 – 9 = 15

The co-existence of met acidosis and met alkalosis

Boston approach in Systemic ABG analysis

- 1. Check arterial pH
- 2. [HCO₃-] & PaCO₂ analysis
- 3. Calculate AG
- 4. Assess delta ratio
 - 5. Check "clues"
 - 6. Assess compensatory responses
 - 7. Formulate acid-base diagnosis

Pertinent Clues

- Hyperglycaemia
- Hypo-K
- Hyper-K
- Hyperchloremia
- Elevated creatinine

DKA

Suggests metabolic alkalosis

Suggests metabolic acidosis

Common with normal AG metabolic acidosis

Uraemic acidosis or hypovolaemia

Boston approach in Systemic ABG analysis

- 1. Check arterial pH
- 2. [HCO₃-] & PaCO₂ analysis
- 3. Calculate AG
 - 4. Assess delta ratio
 - 5. Check "clues"
 - 6. Assess compensatory responses
 - 7. Formulate acid-base diagnosis

The Four Cardinal Acid Base Disorders

Disorder	Нд	pCO ₂	[HCO ₃ -]
M acidosis	\	\	→
M alkalosis	↑	↑	↑
R acidosis	\	↑	↑
R alkalosis	↑	\	\

Rule of Metabolic acidosis

- Mechanism = ↓HCO₃-
- 1.2($\Delta \downarrow HCO_3$ -) = $\Delta \downarrow PaCO_2$
- Anion gap:
- If \triangle AG > 20 met acidosis 67%
- If \triangle AG > 30 met acidosis 100%
- Wide gap → Δ Gap
- Normal gap → Urine AG

What are the acid-base disorders in a 28-year-old man who presents to the ED with several days of vomiting, nausea and abdominal pain. His blood pressure is low and he has tenting of the skin. He has the following electrolytes:

Na 144 mEq/L K 4.2 mEq/L CI 95 mEq/L CO₂ 14 mEq/L

$$AG = 144 - (95 + 14) = 35$$

$$\triangle$$
 AG = 35 - 12 = 23
 \triangle HCO₃ = 27 - 14 = 13

Combined wide gap met acidosis (from dehydration and poor perfusion) and a met alkalosis (from vomiting and loss of stomach acid)

A 27-year-old woman with acute renal failure:

Na 140 mEq/L

K = 4 mEq/L

CI 115 mEq/L

CO₂ 5 mEq/L

ABG:pH 7.12, PaCO₂ 13 mmHg, HCO₃ 4 mEq/L

Met acidosis: AG = 140 - (115 + 5) = 20

 $\Delta AG = 20-12 = 8$

 $\Delta HCO_3 = 20 \rightarrow Delta ratio = 0.4$

Combined wide-gap and normal-gap Met acidosis

Differential Dx of high-anion gap acidosis

Lactic acidosis
Salicylates
Uremia
Methanol intoxication
Paint sniffing (toluene)
Ethylene glycol intoxication
DKA or alcoholic ketoacidosis

Lactic acidosis

Type A = increased O_2 demand or decreased O_2 delivery

Type B = Malignancies (lymphoma)
Phenformin, metformin
hepatic failure
acute respiratory alkalosis (salicylates)
glycogen storage disease type I
etc

Salicylates -

± Hx aspirin ingestion,
 nausea, tinnitus,
 unexplained hyperventilation,
 noncardiogenic pulmonary edema,
 elevated prothrombin time

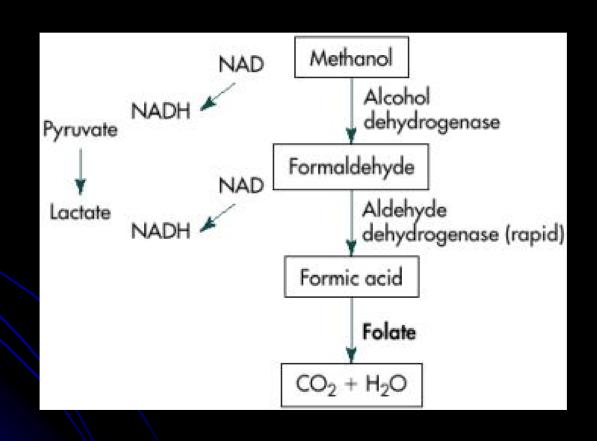
Usually: mixed respiratory alkalosis & metabolic acidosis (rare: pure metabolic acidosis)

Toxic at < 5 mEq/l, so no anionic contribute to AG

No increase in osmolal gap ([ASA] < 5 mM)

Treatment for salicylate intoxication:

Un-ionized form (protonated) enters the brain and is excreted poorly


Rx....alkalinize (HCO3 infusion) to maximize renal excretion (dialysis)

<u>Uremia</u> is indicated by BUN, creatinine (chronicity by kidney size and Hct).

Methanol - presents with

* abdominal pain, vomiting,
headache; CT: BL putamen infarcts
visual disturbance (optic neuritis)

Anion gap may be > 50 Osmolal gap > 10 mOsm

Paint sniffing ("huffing") (toluene)

may present as either anion gap acidosis or normal gap acidosis Anion = hippurate

No increase in osmolal gap

Ethylene glycol

- presents with ± CNS disturbances, cardiovascular collapse, respiratory failure, renal failure

Oxalate crystals

(octahedral or dumbell)

in urine are diagnostic

Anion gap may be > 50

Osmolal gap > 10 mOsm

Diabetic ketoacidosis -

Key clinical features are:

type I DM (i.e. no insulin)

a trigger: e.g. sepsis, fracture, stroke

hyperglycemia

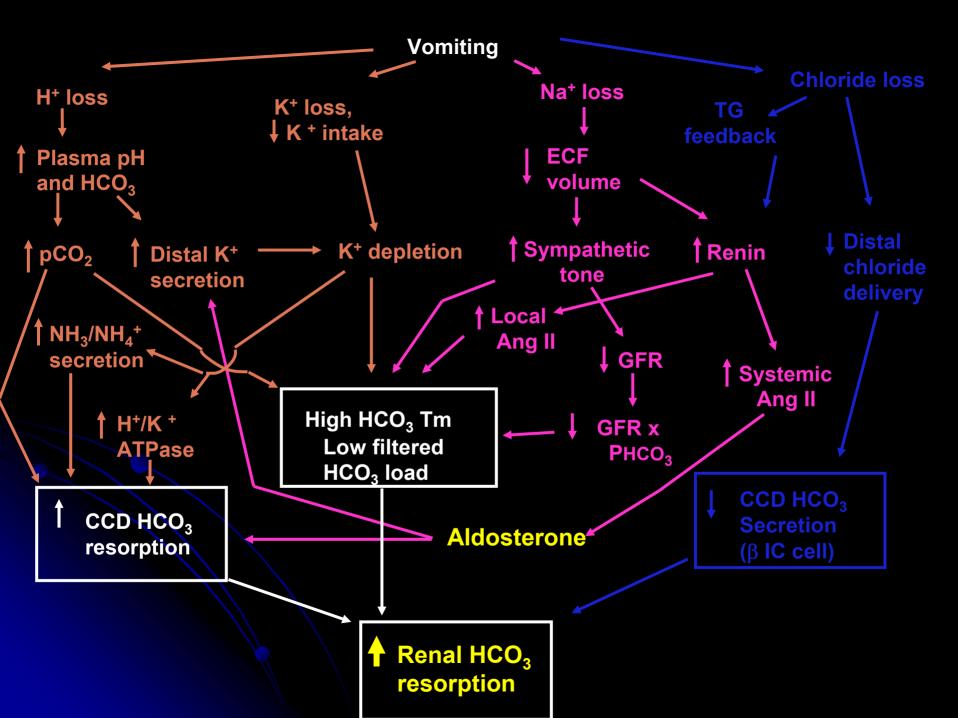
ECF vol depletion & renal insufficiency

acetoacetic- and β hydroxybutyric- acids

Alcoholic ketoacidosis -

recent stopping ingestion of ethanol, hypoglycemia, and contracted ECF (usually due to vomiting)

Initial administration of fluid during the resuscitation of a patient who has a gun short wound of the thorax and abdomen results in a rise in blood presssure to 110/80 mmHg. At this point, arterial blood gases are pH, 7.25; PO₂, 95 mmHg; PCO₂ 25 mmHg; HCO₃- 15 mEq/L. The patient's metabolic acidosis would be treated best with


- A. Tromethamine (Tham)
- B. Sodium bicarbonate
- C. Dextran 70
- D. Balanced salt solution
- E. Hyperventilation

Metabolic alkalosis may be caused by all of the following EXCEPT

- A. Gastric outlet obstruction with vomiting
- B. Diarrhea
- C. Magnesium deficiency
- D. Diuretics
- E. Cushing syndrome

The Four Cardinal Acid Base Disorders

Disorder	рН	pCO ₂	[HCO ₃ -]
M acidosis	\	\	↓
M alkalosis	↑	↑	1
R acidosis	\	↑	↑
R alkalosis	↑	→	\

DIFFERENTIAL DIAGNOSIS OF METABOLIC ALKALOSIS USING URINE CI

Low Urine [Cl-]

Normal Urine [Cl-]

Vomiting

NG suction

Diuretics (late)

Posthypercapnia

Cystic fibrosis

Low Claintake

Mineralocorticoidism

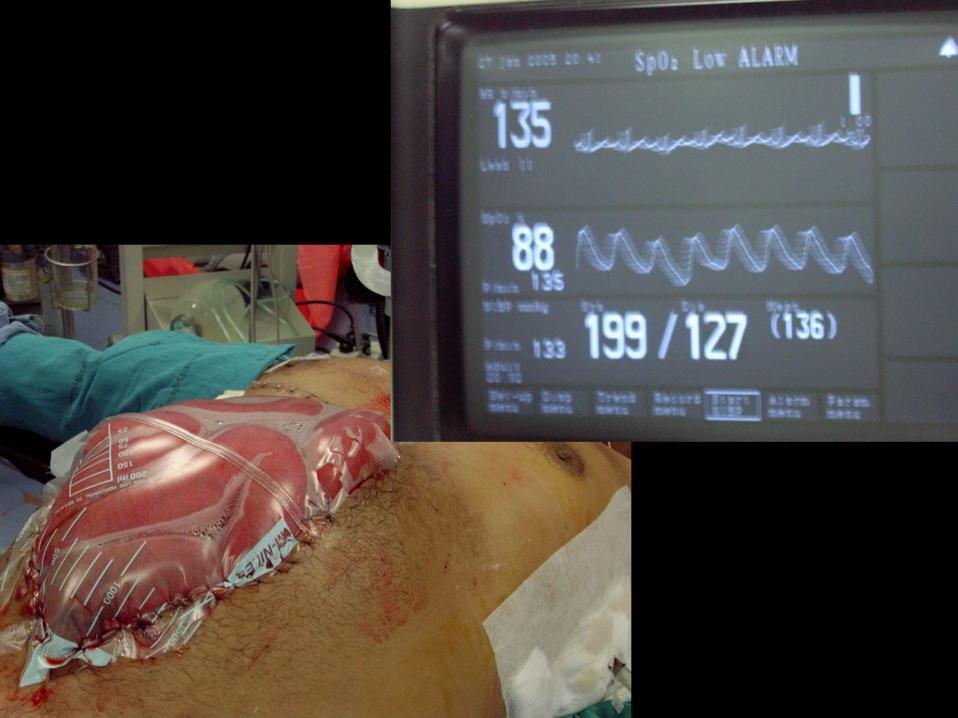
RAS, aldosteronism

11-bDH deficiencies

Bartter's

Diuretics (early)

Severe K⁺ depletion


- A 54 year-old man has been vomiting for three days and has lost 5% of his body weight. His serum electrolytes are as follow: Na 136 mEq/L, K 3.1 mEq/L, Cl 88 mEq/L, HCO₃ 37 mEq/L
- Which of the following is most helpful in determining the cause of his acid-base disorder?
 - A. Urine Sodium
 - B. Urine Creatinine
 - C. Urine Chloride
 - D. Urine anion gap
 - E. Urine pH

The most important ion to replace in a patient dehydrated after several days of emesis from an obstructing pyloric channel ulcer is

- A. bicarbonate
- B. chloride
- C. hydrogen
- D. potassium
- E. sodium

The Four Cardinal Acid Base Disorders

Disorder	рН	pCO_2	[HCO ₃ -]
M acidosis	\	\	\
M alkalosis	↑	↑	↑
R acidosis	\	↑	↑
R alkalosis	↑		\


```
PATIENT SAMPLE REPORT
tatus: ACCEPTED
1/27/2005 23:15:22
ample Type:
Arterial
Sample No.: 62
atient:
ID: 253766
 Name:
   MADAOH
 Sex: U
Instrument:
 Model: GEM 3000
 S/N: 16162
   Measured (37.0C)
pH
            7.15
pC02
                   mmHg
          60
p02
                   mmHğ
Na+
                   mmoI/L
K+
                   mmol/L
                   mg/dL
Ca++
Hct
Temp-Corrected (37.10)
```

Causes of Respiratory Acidosis

<u>Acute</u>

10 mm Hg \uparrow pCO₂ \rightarrow 1 mEq/L \uparrow HCO₃⁻

Asthma

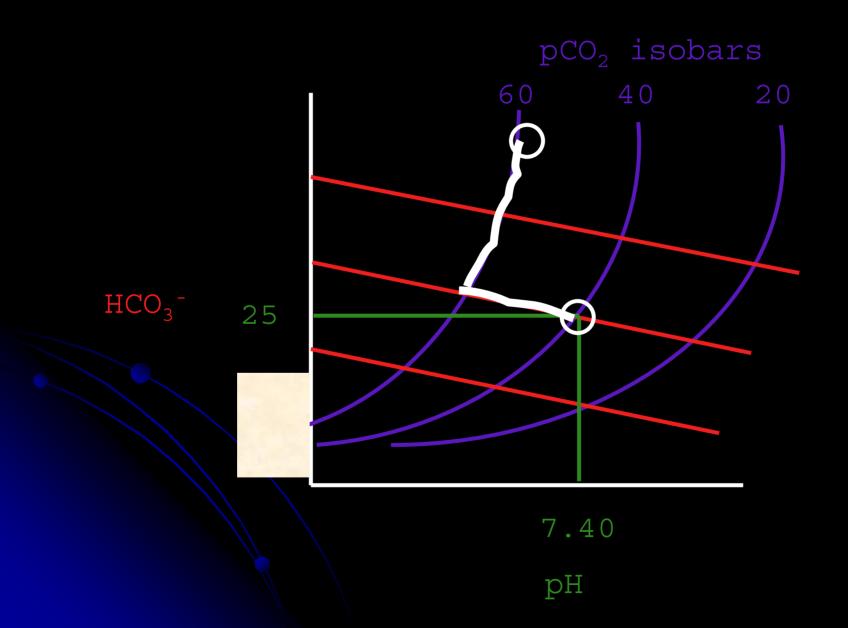
Pulmonary edema

Drug overdose

Cardiac arrest

Sleep apnea

Chronic


10 mm Hg \uparrow pCO₂ \rightarrow 3.5 mEq/L \uparrow HCO₃

Chronic Obstructive Pulmonary Disease (COPD)

Obesity/Pickwickian

Neuromuscular (e.g. Lou-Gehrig's)

Acute Vs Chronic Respiratory Acidosis

Triple Ripple

Disorder	рН	pCO ₂ [HCO ₃ -]
M acidosis	\	\	→
M alkalosis	↑	↑	↑
R acidosis	+		↑
R alkalosis	↑	↓	\

WHAT IS THE ACID-BASE DISTURBANCE?

RA-ABG: 7.50 /pCO2 33 /pO2 105

- 1. Respiratory alkalosis
- 2. Anion gap = 145 (95+25) = 25 \rightarrow Wide-gap met acidosis
- 3. \triangle Gap = 25-12 = 13 \triangle HCO₃ = 1pH is high = metabolic alkalosis

This is the "Triple Ripple"

 A 60-yr-old man with the odor of alcohol on his breath is brought to ER. He is hypotensive, hypothermic, and tachycardia. At admission, laboratory documented: Na 135, K 3.9, Cl 90, HCO₃ 15

BUN 42 Cr 2.0

Blood Sugar 120

ABG: pH 7.36 pO₂ 80 pCO₂ 40

Which of the following is the most accurate description of this patient's acid-base disorder?

AG = 30

- A. Simple metabolic acidosis
- B. Respiratory acidosis and metabolic acidosis
- C. Metabolic acidosis and respiratory alkalosis
- D. Met acidosis, met alkalosis, and respiratory acidosis
- E. Met acidosis, respiratory alkalosis, and respiratory acidosis

Thank You